Устройство и принцип действия Синхронные машины используют прежде всего в качестве генераторов. Их устанавливают на электрических станциях для преобразования механической энергии в элек трическую.

Синхронный генератор состоит из неподвижного статора 2 (рис. 196, а), на котором размещаются три обмотки (Л X, В У. С Т), и вращающегося ротора 1 с полюсами, на которых находится обмотка возбуждения ОВ. Постоянный гок, поступающий в обмотк\ возбуждения, намагничивает ротор, а первичный двигатель вращает его с частотой п. При этом обмотки статора пересекаются магнитным полем и в них индуцируются переменные э. д. с., сдвинутые по фазе на угол 120 Источником постоянного тока возбуждения /„ является возбудитель небольшой генератор постоянного тока, мощность которого составляет 2 -3% мощности грехфазного генератора. Якорь генератора постоянного тока соединен с валом синхронного генератора и приводится во вращение общим первичным двигателем.

При работе первичного двигателя (рис. 196, б) вращается вал ротора 1 и якорь 2. Ток возбуждения /в проходит от положительного полюса возбудителя через щетку Щ1 и кольцо 3, обмотку возбуждения синхронного генератора 6, кольцо 4, щетку Щ2 к отрицательному полюсу возбудителя.

В некоторых синхронных генераторах для создания магнитного потока используется самовозбуждение. В таких генераторах цепь возбуждения подключают к обмоткам статора 7 через специальный выпрямитель. При вращении ротора 5 в обмотках статора 7 возникает небольшой переменный ток за счет остаточной индукции. Этот ток выпрямляется и, поступая в обмотку возбуждения, усиливает магнитный поток ротора, а следовательно, и э. д. с. генератора. Ротор можно вращать паровой или водяной турбиной или двигателем внутреннего сгорания. В соответствии с этим синхронный генератор называется турбогенератором, гидрогенератором или дизель-генератором.

Частота 1 вырабатываемого тока прямо пропорциональна частоте вращения первичного двигателя п и числу пар полюсов ротора: 1 = = /7П/60. Поэтому тихоходные генераторы, работающие совместно с водяными турбинами, имеют большое число явно выраженных полюсов. Генераторы с неявно выраженными полюсами работают совместно с паровыми турбинами и являются быстроходными.

В каждой обмотке статора наводится э. д. с.

Е ==4,44/шФК,

где ш) - число витков обмотки;

Ф - магнитный поток ротора;

К - постоянный коэффициент обмотки.

Э. д. с. и напряжение генератора регулируют реостатом в цепи обмотки возбуждения генератора постоянного тока. Если увеличить ток возбуждения этого генератора, то увеличатся его напряжение и ток возбуждения /в синхронного генератора, в результате чего возрастет магнитный поток Ф ротора и индуцируемая э. д. с. Е. К. п. д. синхронных генераторов большой мощности достигает 96-97%.

Синхронные генераторы применяют для резервного питания устройств железнодорожной автоматики и телемеханики. Они входят

Трехфазный синхронный генератор (дизель-генератор)
Рис. 197. Трехфазный синхронный генератор (дизель-генератор) :

1 - корпус статора; 2 -- сердечник статора; ,? - пазы сердечника статора; 4 - трехфазная обмотка статора; 5 - полюс ротора; 6' - катушка обмотки возбуждения; 7 -- генератор постоянного тока в комплект дизель-генераторных агрегатов (ДГА) (рис. 197), которые используют при неисправности питающих трансформаторных подстанций. При соединении обмоток статора звездой линейное напряжение таких генераторов 380 В, мощность- 12, 24 или 48 кВ • А.

Дизель-генераторы снабжены аппаратурой системы самовозбуждения и автоматического регулирования напряжения (рис. 198). Последовательно с нагрузкой включены первичные обмотки трансформатора 77, а параллельно нагрузке-первичные обмотки трансформатора Т2. Вторичные обмотки этих трансформаторов соединены параллельно и питают выпрямитель В, к которому подключена обмотка возбуждения ОВ синхронного генератора. Вторичный ток /; последовательного трансформатора зависит от тока нагрузки I, вторичный ток 1и параллельного трансформатора - от напряжения нагрузки и. Ток на входе выпрямителя равен геометрической сумме токов и 1и, т. е. I --= /; +

7Ток возбуждения /в зависит не только от тока 1 и напряжения и нагрузки, но и от угла сдвига ф между ними.

Поэтому такую схему называют схемой фазового компаундирования.

Коэффициенты трансформации трансформаторов 77,

Т2 и индуктивности Ь включенных катушек выбирают так, чтобы при любом токе /

Схема синхронного генератора с автоматической регулировкой напряжения
Рис. 198. Схема синхронного генератора с автоматической регулировкой напряжения

и угле ф сохранялось постоянным напряжение генератора U. С возрастанием активной или активно-индуктивной нагрузки увеличиваются токи Іі, 1 /в и э. д. с. Е. В результате автоматически компенсируется действие возрастающего падения напряжения на обмотках статора. Самовозбуждение синхронных генераторов происходит так же, как и в генераторах постоянного тока, за счет остаточного магнетизма. Однако вследствие повышенного сопротивления выпрямителя при малых напряжениях з. д. с. от остаточного магнетизма недостаточна для самовозбуждения. Поэтому принимают ряд мер, улучшающих процесс самовозбуждения. Для этого параллельно выпрямителю В со стороны переменного тока включают резонансный контур, состоящий из конденсаторов. Емкость конденсаторов С выбирают такой, чтобы во время пуска, когда частота вращения ротора п < п„, наступил резонанс напряжений, при котором напряжение на конденсаторах и на входе выпрямителя повысилось. Благодаря этому снижается сопротивление выпрямителя, происходит самовозбуждение. При установившейся частоте вращения ротора п - пв условие резонанса нарушается и конденсаторы практически не влияют на работу схемы.

Характеристики. К основным характеристикам синхронного генератора относятся регулировочные, внешние и характеристики холостого хода. Характеристики снимают с помощью схемы, представленной на рис. 199.

Характеристика холостого хода (рис. 200, а) показывает зависимость э. д. с. Е обмотки статора от тока возбуждения /в при постоянной частоте вращения п и выключенной нагрузке, т. е. Е = /(1 ) при п ----- const; 1 - const; 1 - 0. 1

Ток возбуждения синхронного генератора регулируется реостатом R (см. рис. 199), который включен последовательно с обмоткой возбуждения ОВ. Для измерения тока, напряжения и частоты на выходе генератора включены амперметры (РА1 - РАЗ), вольтметр PV и частотомер Нг. Характеристика холостого хода синхронного генератора подобна кривой намагничивания сердечника ротора.

Внешние характеристики (рис. 200, 6) отображают зависимость напряжения генератора U от тока нагрузки 1 при неизменных токе возбуждения, частоте вращения и коэффициенте мощности, т. е. U - 1 (/) при /п - const; п - const и cos ф - const.

Схема синхронного генератора
Рис. 199. Схема синхронного генератора
Характеристики синхронного генератора
Рис. 200. Характеристики синхронного генератора

Если увеличивать нагрузку с преобладанием индуктивности на генераторе, то его напряжение резко снижается (кривая /). Это объясняется увеличением падения напряжения на обмотках статора и реакцией статора. Реакцией статора называется взаимодействие вращающегося магнитного потока статора с магнитным потоком ротора, которые вращаются с одинаковой скоростью (синхронно). С увеличением нагрузки возрастает магнитный поток обмоток статора, направленный противоположно магнитному потоку ротора. В результате размагничивания ротора снижается э. д. с. и напряжение генератора. Если к генератору подключить только активную нагрузку, то магнитный поток статора будет сдвинут относительно ротора на угол 90°. Размагничивающее действие реакции статора несколько снижается и напряжение генератора изменяется по кривой 2. При нагрузке с преобладанием емкости магнитный поток статора направлен в одну сторону с магнитным потоком ротора. Поэтому напряжение генератора изменяется по кривой 3.

Регулировочные характеристики (рис. 200, в) при активно-индуктивной нагрузке 1, активной нагрузке 2, активно-емкостной нагрузке 3 показывают зависимость тока возбуждения генератора /н от тока нагрузки 1 при постоянном напряжении, частоте вращения и коэффициенте мощности, т. е. /в - 1 (/) при U - const; п const; cos <p -----= const. Регулировочные характеристики показывают, как следует изменять ток возбуждения генератора /в при увеличении тока нагрузки 1 для того, чтобы напряжение генератора U было постоянным.

Асинхронные электродвигатели | Электропитающие устройства и линейные сооружения автоматики, телемеханики и связи железнодорожного транспорта | Первичные химические источники тока